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Abtract The dynamic propenies of fractal aggregates with tunable fractal dimension are 
studied. The fractal dimensions are investigated in the range 1.0 S D 4 2.5. The interactions 
are represented by the Born scalar model and two kinds of rule describing links between panicles 
are used. The specual dimension is determined by computing the integmed density of states 
(IDOS), using the very fast specVal moments method. Comipaiisons with a direct diagonalization 
prove the efficiency of this method. Fuulthermore. we give a Brownian diffusion approach, which 
agrees with the moments method, for D lower than two. It is found thathe spectral dimension 
strongly depends on the fractal dimension and, for fractal dimension larger than two, it varies 
with the degree of connectiviCy taken into account in the model. 

1. Introduction 

Over the past few years, fractal structures have been the subject of much attention. The most 
widely studied systems include aggregation phenomena. Several aggregation models have 
been proposed in order to describe fractal objects such as colloid and aerosol aggregates, 
clusters of balls floating on water [l], etc. We have already introduced an aggregation 
model which is able to build aggregates with fractal dimensions ranging from 1 up to 2.5, 
the variable-D model [Z]. In this paper, we use this model to perform a systematic study 
of the dynamic properties as a function of the fractal dimension. The dynamical properties 
of fractal structures have been studied for a long time. The density of states on a fractal 
structure was studied for the first time by Alexander and Orbach in 1982 131; they took the 
scaling properties of the mass and the connectivity into account. From these investigations, 
it is known that the vibrational density of states varies'as a power (4, - 1) of the frequency 
above a phonon-to-fracton crossover frequency w,, where d, is the spectral dimension. 
Our aim is to calculate the spectral dimension on fractal structures with varying fractal 
dimension. Until now, most of the studies of fracton excitations [4] in fractal structures 
have been done using percolation networks, and a few deterministic fractal structures (like 
the Sierpinski gasket). In each case, the fractal dimension was fixed and could not be 
changed. Moreover it is known that percolation theory, which is restricted to equilibrium 
situations, cannot explain certain structures obtained via irreversible growth phenomena [I]. 
Therefore, since the density of states has been investigated by neutron scattering in real 
disordered systems (like aerogels), it would be interesting to be able to calculate it on the 
basis of different simulation models for these real materials. For that purpose, we use an 
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aggregation model which builds aggregates of tunable fractal dimensions, and we employ a 
powerful tool to find their spectral density. The main principles of the variable-D model are 
reported in section 2. In section 3, we present the dynamic model used and a summary of 
the spectral moments method. The Brownian diffusion approach is developed in section 4, 
with the related theory. Global results for moments and diffusion methods are presented in 
section 5,  followed by a discussion. A comparison with existing experiments on aerogels 
and a conclusion are given in section 6. 

2. The variable-D model 

The model uses a cluster-cluster hierarchical algorithm, on a d-dimensional hypercubic 
lattice with unit lattice parameter. We start the iterative growth from a collection of 2" 
identical particles. We stick the particles, one by one, to obtain 2"-' dimers (first iteration). 
At iteration p .  we have a collection of 2n-P aggregates, containing 2 P  particles each. The 
growth stops when p = n, and we obtain a final aggregate of 2" particles. So, to stick two 
aggregates of N / 2  particles together, the distance r between their centres of mass should 
 satisfy,^ in our model, the condition 

(1) 

where Ri12 is the mean square radius of gyration of the two aggregates, and k is related to 
the desired fractal dimension D, by the relation 

(2) 

(In practice, we try to minimize the absolute difference between the two sides of equation (1) 
[2].) If several configurations satisfy relation (I), the final one is chosen at random among 
all the possibilities. In this work, we have considered version B of the model (using the 
terminology of [2]) in which some rotations of the clusters are allowed when trying to satisfy 
relation (1). The square of the radius of gyration has been averaged over the 2"-P clusters 
of N = 2P particles obtained at each iteration. Then, instead of making aleast-squares fit of 
the log-log plot of N versus m, we have calculated an N-dependent fractal dimension 
D ( N )  obtained by comparing the results from one iteration to the next one [5]: 

P2 = k2Ri12  + 1 

k2 = 4(4'lD - 1). 

The term 4 is introduced to eliminate 'trivial' corrections to scaling [5, 61. In figure l (a) ,  
we plot D ( N )  versus I / N  for input D = 1, 1.5, 2, 2.5 and 3, in d = 3 [2]. As explained 
in [2], a fractal dimension longer than -2.5 cannot be recovered with this model. In the 
following, we use the variable-D model to get aggregates with fractal dimension D ranging 
from 1.0 up to 2.5. In figure I@), we present a projection of three aggregates with D = 1.5, 
2 and 2.5. 

We need several samples for each fractal dimension to work out the averages. For the 
study of the spectral dimension, we consider two kinds of link rule, called: 

(i) ALLINKS: links to all first neighbours are considered; 
(ii) ONELINK only the real links created by the aggregation model are considered; 

there are no loops, i.e. N - 1 links for an aggregate of N particles. 

In figure 2, it can be seen how we stick two aggregates of four particles together (one 
is represented by open circles, and the other by filled circles), following ONELINK and 
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Figure 1. (a) Plot of D(N) versus 1 / N ,  ford = 3, for D = 1, 1.5, 2, 2.5 and 3, from single 
runs up to 8192 particles (version B of [Z]). (b) Projection of Ihree aggregate5 (N = 8192 
p%rticides) with f r a d  dimensions D = 1.5, 2 and 2.5. on the same scale. 

ALLINKS rules. We have drawn all aggregation bonds as bold springs. There is much 
interest in studying these two cases: the ONELINK case is very close to what would 
be obtained in a real cluster-cluster process with ‘rigid’ clusters, while the ALLINKS case 
would correspond to some degree of ‘restructuring’ when extra bonds can be formed (due to 
cluster flexibility or free rotation of bonds). Since some loops are created in the ALLINKS 
case (which are not present in the ONELINK case), it is interesting to know whether or not 
they are relevant in modifying the properties of the spectral density. 

Figure 2. The final aggregate with eight particles (d = 2), obtained by sticking two aggregates 
of four particles each (open and filled circles) together, where bonds are represented by springs. 
In the case ALLINKS, there are nine bonds, in the case ONBLWK, the* are seven bonds. 
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3. The spectral moments method 

3.1. The model 

We now assume that the particles are connected by springs. The displacements of the 
particles are represented by scalars. Then, the set of equations of motion for the site i is 
given by 

U, is the scalar displacement of the site i, kij are the force constants between particles i and 
j ,  yij are coefficients depending on the linkage rules. For the ALLINKS model, yij = 1, if 
i and j are occupied, while with the ONELINK model, yij = 1 only if a real link has been 
created between particles i and j by the aggregation model (see figure 2). (Here, we have 
used m = 1 and k = 1.) 

3.2. The numerical method 

We use the spectral moments method (SMM) [7, 81 which is a powerful tool for studying 
the dynamic properties of harmonic systems. This method has been applied to the study of 
fractal structures, percolation networks and silica aerogels [9, 101. To compute the spectral 
dimension, we apply an extension of the SMM. The DOS is given by 

where wj is the frequency of the j th  eigenmode, the eigenvalue Aj of the dynamic matrix 
D being equal to the square of the frequency. It is more convenient to work with U = w2 
and hj = CO:, and compute 

(7) G(u) = C6(U - hj)  
j 

which is the squared frequency distribution. It is well known that 
. 

g(o) = 2wG(02). (8) 
G(u) can be written as 

(9) 
I .  G(u) = -- lim {Im [R(z)]}  n E'O+ 

where z = U +is, and R(z)  is the Stieljes transform of G(u). One can show that [7] 
1 

R(z )  = Tr((z1- D)-') = - x(qm. ( z l  - D)-'qU) (10) 

where ( x . y )  is the usual scalar product between vectors x and y .  Then G(u) can be 
deduced from R(z). M is the number of q"-vectors whose components are randomly taken 
between -0.5 and + O S  (or = 1, . . . , M ) .  Accurate results are obtained if M N  o( IO6. 
With N 0: Id, it is necessary to average the DOS over about M = 200 systems. In the 
following, there is a double average: one on the structures of the aggregates, for a given 

A M  c( 



The spectral dimension offractal aggregates . ~ ~ 9707 ~- 

value of D, and another for a given system with M different values of the qa-vectors. Now, 
the method consists in developing R(z)  in a continued fraction 

for a given system and each value of the q'-vectors. The coefficients a; and b; are 
calculated from the dynamic matrix. The generalized moments of G(u) can be written as 

Relations (15) and (16) allow the determination of R(z )  and, thus, g(o). In practice, the 
method consists in starting with 4a, computing uo and from (12) and (13), then computing 
a1 and b l ,  and SO on. The method can be summarized by the following scheme, with bo = 1 

and 

b,"+2. 
n 

" P I  
7 

U," 

The SMM gives very good results with very large systems. If the system is smaller 
( N  c( lo3), some difficulties appear when computing the slope of the log-log plot of the 
density of states. We find fluctuations which arise from the presence of small gaps in the 
spectrum. Then, the computed slopes are largely dependent on the value of the parameter E .  

Such an effect does not appear when computing with very large systems. In order to obtain 
very accurate results, we have directly computed the integrated density of states (IDOS). 
We compute the function H(rr), such that 

H(u)  = /o- G(u') du' (19) 

H ( u )  ci udJIz. (20) 

so from (19) 
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From equation (lo), one obtains 

with 

where (nl j )  is the nth component of the eigenvector I j) and where q; is the nth component 
of the q'-vector defined above. Let us define F(u) ,  such that 

F ( u )  = R(z)  dz (23) 

where the contour C is a circle R = U. From @I), (23) and Cauchy theorem, one obtains 

where 4," are random numbers such that [7] 

So, we have found that 

and, using the orthogonality of eigenvectors, one finds that 

F(u)  = 2niH(u) 

which allows us to compute the integrated density of states directly from the generalized 
moments. In practice, we cut the integration on the complex domain into two parts 

(i) positive angle, with +8 < .9 < fn; 
(ii) negative angle, with R -= 0 < -8. 

The radius U of integration is very finely discretized from 0 to umax. To improve 
the efficiency of results found with the SMM, we present, in figures 3(a) and (b), graphs 
of log(H(u)) versus log(u) for small systems, compared with results obtained by direct 
uiagonalization (which gives exact results). As the computation of diagonalization is limited 
to matrices no larger than about 2000 x 2000, we have used SMM on aggregates of 2048 
particles, to give a good comparison. For the other calculations, we have worked on 
samples with 8192 particles. In figure 3, we have averaged all the simulations on five 
samples of 2048 particles for the two methods (open triangles for SMM and solid line for 
diagonalization). 

4. Brownian diffusion on a fractal aggregate 

An alternative way to determine the spectral dimension is to study random walks on the 
same fractal aggregates. 

The fundamental property of the random walks in which we are interested is the variation 
of the mean square displacement from the origin at timc t (t being here the number of steps 
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Figure 3. A comparison between the moments and diagonalization methods for aggregates of 
2048 particles, averaged over five samples. A plot of log(H(u)) versus log(u) in the case of: 
(a)  a linear chain; (b) fractal aggregates of dimension D = 1.60, ALLINKS and ONELINK 
cases (open triangle for SMM, solid line for diagonalization). 

performed on the aggregate). An exponent v is introduced to describe the asymptotic 
behaviour I31 

(RZ(t))  M t*v (28) 
for large t. 

With scaling arguments, it is shown that, on a fractal structure [3] 

where d, is the spectral dimension and D the fractal dimension. In a Euclidean space of 
dimension d, it is well known that v = 4. As it should be, the standard value $ is recovered 
on a Euclidean lattice, where d, = D. With (29), relation (28) becomes 

(Rz ( t ) )  at% f +.W. (30) 
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In accordance with (30), we have performed random walks on aggregates of N = 2048 
pasticles, for 1000 steps, averaged over 100 different starting sites. Each starting particle 
is chosen randomly in a small cubic box, containing the centre of mass of the aggregate. 
We have also averaged over five different samples in order to minimize fluctuations. Figure 
4 presents three examples of plots obtained with the diffusion method a log-log plot of 
( R Z ( t ) )  versus t for a linear chain (a) and for aggregates with fractal dimension D = 2.18, 
in the two cases ONELINK and ALLINKS (b). 

IWSP 

Fiyre 4. A plat of log(R*(r)) versus log@) (where t is the number of steps), in the case of: 
(a) a linear chain (d, = 1); (b)  fractal aggregates of dimension D = 2.18, in Lhc ALLINKS 
(ds = 1.345) and ONELINK (d, = 1.288) cases. 

5. Results and discussion 

First, let us consider the SMM results, reported in figure 5 .  In the two cases, the value of 
d,T increases monotically with D ,  and, for large values of D, the results for dx are larger 
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for the ALLINKS than for the ONELINK model. In both the ALLINKS and ONELINK 
models, the results for D 5 2 are almost superimposed and well fitted (within the error 
bars) by the linear relationship d, N 1 + 0.2(D - 1). For D 2 2, they separate: while d, 
becomes almost independent of D (ds N 1.20) in the ONELINK case, it increases more 
rapidly in the ALLINKS case (but we have not got enough data to provide a reliable fit). 
This last result can be understood since d, should tend to three in the ALLINKS case when 
D --f 3, while there is no obvious D = 3 h i t  in the ONELINK case. 

M A L L I N K S  
H O N E L I N K  : 1.40 

1.30 

Ij) v 

1.20 

1.10 

1.00 

D 

Figure 5. The specual dimension calculated by the moments method, for agpgates with 8192 
particles. averaged on five samples. We present the two cases: ALLINKS and ONELINK. 

Let us now present the results of the Brownian diffusion method (figure 6). The same 
qualitative behaviour is observed but the curves separate earlier, at about D N 1.8. Here the 
differences between the ALLINKS and ONELINK cases for large D-values are explained 
by the large probability of the random walk returning to the origin due to the existence of 
loops in the ALLINKS case. In principle, there should be no difference between the two 
methods and we think the discrepancies between figure 5 and figure 6 might be explained by 
systematic finite-size errors. This is illustrated in figure 7, where we have plotted d, versus 
1/N for two typical values of D @elow and above D N 2 ) in the two ALLINKS (a )  and 
ONELINK (b )  cases (diffusion is represented by circles and SMM by triangles, with filled 
symbols for D = 2.20 and  open^ symbols for D = 1.50). For large systems, the results 
of the SMM method are nearly independent of size whilst the random-walk results depend 
on size, more significantly for D = 2.2 than for D = 1.50, and support the conjecture of 
the same asymptotic ( N  + 00 ) limit as found with the SMM. Therefore the differences 
between the random-walk method and the SMM for D > 2 are certainly purely artifactual 
and arise from the strong finite-size errors in the random-walk case. 

Furthermore, let us show how the SMM method can be compared with a third estimate 
of d, based on the Alexander and Orbach formula [3] .," c( ~ - 2 l d s  (31) 

where w, is the phonon-fracton crossover frequency. In our model, there are no phonon 
modes. So, o, is the lowest non-zero frequency of the spectrum [3]. We have plotted 
log(o2) versus log(N) (an example for D = 1.5 is shown in figure 8) and found very good 



9712 R Thouy et a1 

&me 6. The specval dimension calculated by the diffusion method, for aggregates with 8192 
particles, averaged over five samples. We present the WO cases: ALLINKS and ONELWK. 

results-in both ALLINKS and ONELINK cases. We summarize the results for d,, for 
D = 2.20 and D = 1.50, in table 1. 

Table 1. A compmson of results obwined ford' nith the specoal moments method (SMW 
and usiog the Alexandcr and Orbach formula (AOFI for two significant \alum of D .  

D = 1.50 d? D =2.20 d, 

ONELINK SMM 1.13 SMM 1.184 
AOF 1.111 AOF 1.197 

ALLINKS SMM 1.100 SMM 1.250 
AOF 1.104 AOF 1.246 

6. Comparison with experiments and conclusion 

In this paper, we have obtained an explicit variation of the spectral dimension d, as a 
function of the fractal dimension for a series of aggregates of tunable fractal dimension and 
we have shown that including loops can subsequently increase ds, at least for large fractal 
dimension. At this stage it might be tempting to compare the present theoretical results with 
the existing experiments, especially in the case of aerogels, where the existence of fractons 
has been best demonstrated. The spectral dimension of aerogels has been estimated by 
Brillouin scattering experiments giving d, N 1.1 in the case where they are prepared with 
a basic catalyser [ I l l  and ds N 1.3 without a catalyser [12]. The spectral dimension of 
basic aerogels is in remarkably good agreement with the present work if one knows that 
their fractal dimension is D = 1.8 [13], a value corresponding to d, N 1.15 in both the 
ONELINK and ALLINKS cases. Moreover, it is known that small-angle neutron scattering 
experiments are very well accounted for by numerical simulations based on the diffusion- 
limited cluster-cluster aggregation model 1141 which is a model very close to the variable-D 
model for D = 1.8. To discuss the case of neutral aerogels, one should consider that a 
fractal dimension of D = -2.3 gives here d, N 1.2 in the ONELINK case and d, N 1.3 
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Figure 7. Fluctuations due to size effects and aggregate structures for D = 1.50 (open symbols) 
and 2.20 (filled symbols). for N = 512, 1024, 2048, 4096 and 8192 particles. for (a) the 
ALLINKS case; (b) the ONELINK case. (Diffusion method (circle), SMM (triangle).) 

in the ALLINKS case. Again, this seems to be in good agreement with the experiments 
if one knows that the structure of neutral aerogels is of a polymeric nature and certainly 
has many more loops than the structure of basic aerogels. However, there has been a 
recent interpretation of the neutral aerogel experimental results concluding that there is a 
smaller (D Y 2) fractal dimension [15]. In this framework, it would be necessary to include 
many more loops andor much more connectivity, to explain the relatively high value of d,. 
Unfortunately, this is outside the scope of the present modelling. Overall, it is important to 
notice that here we have used a scalar model, while in experiments the tensorial nature of 
the vibrations has been evident, as some torsion modes have been invoked, even in the case 
of basic aerogels [ 111. Therefore it is a x  intention to extend the present calculations to the 
case of more complicated potentials, taking care of the tensorial character of the vibrations 
in order to test whether the d,-values are modified or not. This is a more difficult task and, 
to our knowledge, such a study has only been done on percolation clusters up to now [4]. 
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Figure 8. A plot of log(o:) vepsus log(N), in the ONELINK case, for D = 1.50. With formula 
(31) we obtain d, = 1.11 (d, = 1.106 with SMM). 

We think that using the variable-D model would be a great improvement and would clarify 
comparisons with experimental results. 
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